Advertisement

Role of volume in small abdominal aortic aneurysm surveillance

Published:October 13, 2021DOI:https://doi.org/10.1016/j.jvs.2021.09.046

      Abstract

      Objective

      Current management of small abdominal aortic aneurysms (AAAs) primarily involves serial imaging surveillance of maximum transverse diameter (MTD) to estimate rupture risk. Other measurements, such as volume and tortuosity, are less well-studied and may help characterize and predict AAA progression. This study evaluated predictors of AAA volume growth and discusses the role of volume in clinical practice.

      Methods

      Subjects from the Non-invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (baseline AAA MTD, 3.5-5.0 cm) with ≥2 computed tomography scans were included in this study (n = 250). Computed tomography scans were conducted approximately every 6 months over 2 years. MTD, volume, and tortuosity were used to model growth. Univariable and multivariable backwards elimination least squares regressions assessed associations with volume growth.

      Results

      Baseline MTD accounted for 43% of baseline volume variance (P < .0001). Mean volume growth rate was 10.4 cm3/year (standard deviation, 8.8 cm3/year) (mean volume change +10.4%). Baseline volume accounted for 30% of volume growth variance; MTD accounted for 13% of volume growth variance. More tortuous aneurysms at baseline had significantly larger volume growth rates (difference, 32.8 cm3/year; P < .0001). Univariable analysis identified angiotensin II receptor blocker use (difference, −3.4 cm3/year; P = .02) and history of diabetes mellitus (difference, −2.8 cm3/year; P = .04) to be associated with lower rates of volume growth. Baseline volume, tortuosity index, current tobacco use, and absence of diabetes mellitus remained significantly associated with volume growth in multivariable analysis. AAAs that reached the MTD threshold for repair had a wide range of volumes: 102 cm3 to 142 cm3 in female patients (n = 5) and 105 cm3 to 229 cm3 in male patients (n = 20).

      Conclusions

      Baseline AAA volume and MTD were found to be moderately correlated. On average, AAA volume grows about 10% annually. Baseline volume, tortuosity, MTD, current tobacco use, angiotensin II receptor blocker use, and history of diabetes mellitus were predictive of volume growth over time.

      Keywords

      To read this article in full you will need to make a payment
      SVS Member Login
      Society Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Centers for Disease Control and Prevention
        Underlying cause of death, 1999-2018 request.
        (Available at:) (Accessed July 11, 2020)
        • Kent K.C.
        • Zwolak R.M.
        • Egorova N.N.
        • Riles T.S.
        • Manganaro A.
        • Moskowitz A.J.
        • et al.
        Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals.
        J Vasc Surg. 2010; 52: 539-548
        • Lederle F.A.
        • Johnson G.R.
        • Wilson S.E.
        • Ballard D.J.
        • William D.
        • Jordan J.
        • et al.
        Veterans Affairs Cooperative Study #417 Investigators. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair.
        JAMA. 2002; 287: 2968-2972
        • Brown P.M.
        • Zelt D.T.
        • Sobolev B.
        The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate.
        J Vasc Surg. 2003; 37: 280-284
        • Chaikof E.L.
        • Dalman R.L.
        • Eskandari M.K.
        • Jackson B.M.
        • Lee W.A.
        • Mansour M.A.
        • et al.
        The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm.
        J Vasc Surg. 2018; 67: 2-77.e2
        • van Keulen J.W.
        • van Prehn J.
        • Prokop M.
        • Moll F.L.
        • van Herwaarden J.A.
        Potential value of aneurysm sac volume measurements in addition to diameter measurements after endovascular aneurysm repair.
        J Endovasc Ther. 2009; 16: 506-513
        • Kritpracha B.
        • Beebe H.G.
        • Comerota A.J.
        Aortic diameter is an insensitive measurement of early aneurysm expansion after endografting.
        J Endovasc Ther. 2004; 11: 184-190
        • Parr A.
        • Jayaratne C.
        • Buttner P.
        • Golledge J.
        Comparison of volume and diameter measurement in assessing small abdominal aortic aneurysm expansion examined using computed tomographic angiography.
        Eur J Radiol. 2011; 79: 42-47
        • Renapurkar R.D.
        • Setser R.M.
        • O’Donnell T.P.
        • Egger J.
        • Lieber M.L.
        • Desai M.Y.
        • et al.
        Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm.
        Eur J Radiol. 2012; 81: e87-93
        • Giannoglou G.
        • Giannakoulas G.
        • Soulis J.
        • Chatzizisis Y.
        • Perdikides T.
        • Melas N.
        • et al.
        Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion.
        Angiology. 2006; 57: 487-494
        • Baxter B.T.
        • Matsumura J.
        • Curci J.
        • McBride R.
        • Blackwelder W.C.
        • Liu X.
        • et al.
        • N-TA(3)CT Investigators
        Non-Invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (N-TA3CT): design of a phase IIb, placebo-controlled, double-blind, randomized clinical trial of doxycycline for the reduction of growth of small abdominal aortic aneurysm.
        Contemp Clin Trials. 2016; 48: 91-98
        • Baxter B.T.
        • Matsumura J.
        • Curci J.A.
        • McBride R.
        • Larson L.
        • Blackwelder W.
        • et al.
        • N-TA3CT Investigators
        Effect of doxycycline on aneurysm growth among patients with small infrarenal abdominal aortic aneurysms: a randomized clinical trial.
        JAMA. 2020; 323: 2029-2038
        • Chaikof E.L.
        • Fillinger M.F.
        • Matsumura J.S.
        • Rutherford R.B.
        • White G.H.
        • Blankensteijn J.D.
        • et al.
        Identifying and grading factors that modify the outcome of endovascular aortic aneurysm repair.
        J Vasc Surg. 2002; 35: 1061-1066
        • Shapiro S.S.
        • Wilk M.B.
        An analysis of variance test for normality (complete samples).
        Biometrika. 1965; 52: 591-611
        • Norman P.E.
        • Curci J.A.
        Understanding the effects of tobacco smoke on the pathogenesis of aortic aneurysm.
        Arterioscler Thromb Vasc Biol. 2013; 33: 1473-1477
        • Olson S.L.
        • Wijesinha M.A.
        • Panthofer A.M.
        • Blackwelder W.C.
        • Upchurch Jr., G.R.
        • Terrin M.L.
        • et al.
        Evaluating growth patterns of abdominal aortic aneurysm diameter with serial computed tomography surveillance.
        JAMA Surg. 2021; 156: 363-370
        • Lortz J.
        • Tsagakis K.
        • Rammos C.
        • Lind A.
        • Schlosser T.
        • Jakob H.
        • et al.
        Hemodynamic changes lead to alterations in aortic diameters and may challenge further stent graft sizing in acute aortic syndrome.
        J Thorac Dis. 2018; 10: 3482-3489
        • Jonker F.H.W.
        • Verhagen H.J.M.
        • Mojibian H.
        • Davis K.A.
        • Moll F.L.
        • Muhs B.E.
        Aortic endograft sizing in trauma patients with hemodynamic instability.
        J Vasc Surg. 2010; 52: 39-44
        • Wever J.
        • Blankensteijn J.
        • WPThM Mali
        • Eikelboom B.
        Maximal aneurysm diameter follow-up is inadequate after endovascular abdominal aortic aneurysm repair.
        Eur J Vasc Endovasc Surg. 2000; 20: 177-182
        • Kauffmann C.
        • Tang A.
        • Therasse É.
        • Giroux M.-F.
        • Elkouri S.
        • Melanson P.
        • et al.
        Measurements and detection of abdominal aortic aneurysm growth: accuracy and reproducibility of a segmentation software.
        Eur J Radiol. 2012; 81: 1688-1694
        • Prinssen M.
        • Verhoeven E.L.G.
        • Verhagen H.J.M.
        • Blankensteijn J.D.
        Decision-making in follow-up after endovascular aneurysm repair based on diameter and volume measurements: a blinded comparison.
        Eur J Vasc Endovasc Surg. 2003; 26: 184-187
        • Singh-Ranger R.
        • McArthur T.
        • Corte M.D.
        • Lees W.
        • Adiseshiah M.
        The abdominal aortic aneurysm sac after endoluminal exclusion: a medium-term morphologic follow-up based on volumetric technology.
        J Vasc Surg. 2000; 31: 490-500
        • Hatakeyama T.
        • Shigematsu H.
        • Muto T.
        Risk factors for rupture of abdominal aortic aneurysm based on three-dimensional study.
        J Vasc Surg. 2001; 33: 453-461
        • Pappu S.
        • Dardik A.
        • Tagare H.
        • Gusberg R.J.
        Beyond fusiform and saccular: a novel quantitative tortuosity index may help classify aneurysm shape and predict aneurysm rupture potential.
        Ann Vasc Surg. 2008; 22: 88-97
        • Lindeman J.H.
        • Matsumura J.S.
        Pharmacologic management of aneurysms.
        Circ Res. 2019; 124: 631-646
        • Fujiwara Y.
        • Shiraya S.
        • Miyake T.
        • Yamakawa S.
        • Aoki M.
        • Makino H.
        • et al.
        Inhibition of experimental abdominal aortic aneurysm in a rat model by the angiotensin receptor blocker valsartan.
        Int J Mol Med. 2008; 22: 703-708
        • Iida Y.
        • Xu B.
        • Schultz G.M.
        • Chow V.
        • White J.J.
        • Sulaimon S.
        • et al.
        Efficacy and mechanism of angiotensin II receptor blocker treatment in experimental abdominal aortic aneurysms.
        PLoS One. 2012; 7: e49642
        • Thompson A.
        • Cooper J.A.
        • Fabricius M.
        • Humphries S.E.
        • Ashton H.A.
        • Hafez H.
        An analysis of drug modulation of abdominal aortic aneurysm growth through 25 years of surveillance.
        J Vasc Surg. 2010; 52: 55-61.e2
        • Golledge J.
        • Pinchbeck J.
        • Tomee S.M.
        • Rowbotham S.E.
        • Singh T.P.
        • Moxon J.V.
        • et al.
        • TEDY Investigators
        Efficacy of telmisartan to slow growth of small abdominal aortic aneurysms: a randomized clinical trial.
        JAMA Cardiol. 2020; 5: 1374-1381
        • Lederle F.A.
        • Johnson G.R.
        • Wilson S.E.
        • Chute E.P.
        • Littooy F.N.
        • Bandyk D.
        • et al.
        Prevalence and associations of abdominal aortic aneurysm detected through screening.
        Ann Intern Med. 1997; 126: 441-449
        • Lederle F.A.
        The strange relationship between diabetes and abdominal aortic aneurysm.
        Eur J Vasc Endovasc Surg. 2012; 43: 254-256
        • Sweeting M.J.
        • Thompson S.G.
        • Brown L.C.
        • RESCAN collaborators
        Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms.
        J Vasc Surg. 2012; 56: 1473
        • Shantikumar S.
        • Ajjan R.
        • Porter K.E.
        • Scott D.J.A.
        Diabetes and the abdominal aortic aneurysm.
        Eur J Vasc Endovasc Surg. 2010; 39: 200-207
        • Golledge J.
        • Karan M.
        • Moran C.S.
        • Muller J.
        • Clancy P.
        • Dear A.E.
        • et al.
        Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions.
        Eur Heart J. 2008; 29: 665-672
        • Fujimura N.
        • Xiong J.
        • Kettler E.B.
        • Xuan H.
        • Glover K.J.
        • Mell M.W.
        • et al.
        Metformin treatment status and abdominal aortic aneurysm disease progression.
        J Vasc Surg. 2016; 64: 46-54.e8
        • Golledge J.
        • Moxon J.
        • Pinchbeck J.
        • Anderson G.
        • Rowbotham S.
        • Jenkins J.
        • et al.
        Association between metformin prescription and growth rates of abdominal aortic aneurysms.
        Br J Surg. 2017; 104: 1486-1493
        • Itoga N.K.
        • Rothenberg K.A.
        • Suarez P.
        • Ho T.-V.
        • Mell M.W.
        • Xu B.
        • et al.
        Metformin prescription status and abdominal aortic aneurysm disease progression in the U.S. veteran population.
        J Vasc Surg. 2019; 69: 710-716.e3
        • Aune D.
        • Schlesinger S.
        • Norat T.
        • Riboli E.
        Tobacco smoking and the risk of abdominal aortic aneurysm: a systematic review and meta-analysis of prospective studies.
        Sci Rep. 2018; 8: 14786
        • Thompson S.
        • Brown L.
        • Sweeting M.
        • Bown M.
        • Kim L.
        • Glover M.
        • et al.
        Systematic review and meta-analysis of the growth and rupture rates of small abdominal aortic aneurysms: implications for surveillance intervals and their cost-effectiveness.
        Health Technol Assess. 2013; 17: 1-118
        • Kitagawa A.
        • Mastracci T.M.
        • von Allmen R.
        • Powell J.T.
        The role of diameter versus volume as the best prognostic measurement of abdominal aortic aneurysms.
        J Vasc Surg. 2013; 58: 258-265