branch of the popliteal artery. A 4F, 100-cm, 45-degree catheter was positioned at the origin of the pseudoaneurysm. A Tracker 325 microcatheter system (Meditech, Natick, Mass) was then placed through the catheter, and the tip of the microcatheter was located within the pseudoaneurysm. The pseudoaneurysm was then injected with 0.5 mL of thrombin solution. Two 2-mm target embolization coils (Boston Scientific Corp, Natick, Mass) were then deployed in the pseudoaneurysm, extending across the neck and into the sural branch artery. A follow-up injection of contrast demonstrated no flow within the pseudoaneurysm (Fig 1). The patient was discharged on the first day after the procedure. Follow-up duplex scan 1 week later confirmed no flow in the pseudoaneurysm.

Case 2.

A 31-year-old woman underwent routine left knee arthroscopy for progressive knee pain. Again, no intraoperative difficulties were noted. Five days after the procedure the patient experienced severe left calf pain. Physical examination revealed a tender mass in the left popliteal fossa, and the calf was swollen and ecchymotic. Color duplex scanning suggested a popliteal pseudoaneurysm with associated AVF (Fig 2). A magnetic resonance angiography (MRA) was performed, which confirmed a left popliteal pseudoaneurysm and AVF (Fig 3, A). A subsequent arteriogram demonstrated a pseudoaneurysm and accompanying AVF arising from a sural branch of the popliteal artery. A 4F, 100-cm, 45-degree catheter was positioned at the origin of the pseudoaneurysm. A Tracker 325 microcatheter system (Meditech, Natick, Mass) was then placed through the catheter, and the tip of the microcatheter was located within the pseudoaneurysm. The pseudoaneurysm was then injected with 0.5 mL of thrombin solution. Two 2-mm target embolization coils (Boston Scientific Corp, Natick, Mass) were then deployed in the pseudoaneurysm, extending across the neck and into the sural branch artery. A follow-up injection of contrast demonstrated no flow within the pseudoaneurysm (Fig 1). The patient was discharged on the first day after the procedure. Follow-up duplex scan 1 week later confirmed no flow in the pseudoaneurysm.

DISCUSSION

Knee arthroscopy is generally a safe procedure with a low incidence of complications. In two of the largest series, complication rates of 0.54% and 0.8% were reported.1,2 Penetrating injury to the popliteal artery or the popliteal artery branches during arthroscopic surgery is a rare but potentially devastating complication. In a retrospective study of 375,000 arthroscopic procedures, Small1 noted nine cases of penetrating trauma to the
popliteal artery. In a later study, he did not encounter any vascular injury in 8741 cases. In a review of 118,540 arthroscopic procedures, DeLee identified six penetrating popliteal artery injuries, four of which resulted in amputation, emphasizing the magnitude of this complication. Although injury to the popliteal artery during arthroscopy is rare, injury to a branch of the popliteal artery is even rarer, with no prior reports of soleal artery injuries.

The popliteal artery is susceptible to injury during arthroscopy because it is closely related to the posterior capsule of the knee joint and is only separated by a small amount of fat. With knee flexion the vessel is kinked forward, placing the popliteal artery dangerously close to the posterior horn of the lateral meniscus. Thus, excision of the posterior horn of the lateral meniscus may result in injury to the popliteal artery. Geniculate arteries, however, are more likely to be injured by portal placement while meniscectomy is performed. Limited visualization and the use of a tourniquet to maintain a bloodless operative field may leave the injury unrecognizable.

Diagnoses of popliteal artery or popliteal artery branch injury after knee arthroscopy should be suspected in a patient who presents at any time after surgery with increasing pain, swelling, or ecchymosis in the popliteal fossa or calf. These complaints can be attributed to the initial extravasation of blood from an incompletely divided vessel, followed by formation of a pseudoaneurysm, which may or may not enlarge. Undiagnosed, a pseudoaneurysm of the popliteal artery may lead to limb-threatening ischemia from thromboembolism, or rarely, it may rupture. Alternatively, complete or near-total transection of the popliteal artery will present much earlier because of obvious signs of acute ischemia and mass effect within a small compartment.

Imaging studies are needed to confirm the diagnosis. With standard scanning techniques, noninvasive color flow duplex ultrasound scan can reliably identify the presence of a pseudoaneurysm, AVF, or both. However, as demonstrated by these two cases, duplex scan may not distinguish between popliteal artery and popliteal artery branch pseudoaneurysms, which have drastically different therapeutic approaches. MRA is another accurate noninvasive study, but it is more time-consuming and costly and only provides diagnostic information. Angiography should be used after a pseudoaneurysm or AVF is diagnosed to precisely determine the vessels involved and to potentially treat an injury at the same time. In both of our cases, the angiograms demonstrated pseudoaneurysms arising from the soleal artery, not the popliteal artery, as suggested with duplex scan and MRA.

Treatment of a pseudoaneurysm or AVF arising from a branch of the popliteal artery can be readily accomplished...
directly after the diagnostic arteriogram with selective catheterization and embolization techniques. Careful subselective catheterization of the affected branch with coil occlusion will be successful in occluding the pseudoaneurysm while sparing the popliteal artery. In general, it will be necessary to use a microcatheter and microcoil system to precisely obliterate the injured vessel. This technique avoids an open surgical procedure complicated by inflammation and anatomic distortion from the pseudoaneurysm. Sarrosa and Ogilvie-Harris also successfully treated a pseudoaneurysm of the inferior medial geniculate artery with coil embolization, and Hilborn et al. successfully embolized a pseudoaneurysm of a vastus medialis branch of the popliteal artery. Both cases occurred after knee arthroscopy.

Other potential methods of treating popliteal artery branch pseudoaneurysms include ultrasound scan–guided compression and ultrasound scan–guided thrombin injection. Both methods have been effectively used for the treatment of femoral artery pseudoaneurysms. In contrast, two patients reported by Hilborn et al. failed attempted ultrasound scan–guided compression of the pseudoaneurysms. In the current two cases we thought that the surrounding anatomy of the knee and muscle precluded accurate compression or thrombin injection. A final method of treatment is an open surgical procedure, with ligation of the branch pseudoaneurysm. One disadvantage with an open repair is that dissection is required in an inflamed area. Although the natural history of popliteal artery branch pseudoaneurysms is unknown, it is prudent to eliminate them to alleviate symptoms and to prevent the potential complication of rupture.

In contrast, injury to the main popliteal artery that results in a pseudoaneurysm should be operatively repaired. The reasons for repairing popliteal artery pseudoaneurysms are to avoid thromboembolic complications, which may lead to amputation; to avoid bleeding complications from rupture; and to avoid nerve compression from a mass effect. Depending on the location, a posterior or medial approach can be used. Popliteal artery pseudoaneurysms can be fixed with either primary repair or an interposition vein graft. Alternatively, there are reports of popliteal artery pseudoaneurysms and true aneurysms being repaired with endovascular stents. However, these reports contain small numbers of patients who are generally poor operative candidates, and follow-up is short. Until more data are acquired, traditional surgical methods of treatment should be used.

In summary, we report two rare cases of pseudoaneurysms of the small branch arteries of the popliteal artery after knee arthroscopy. Diagnosis of a vascular injury after arthroscopy requires a high index of suspicion, and it can be confirmed with duplex scanning. Angiography should also be performed, and definitive treatment may be possible at that time if the injury does not involve the main popliteal artery. Vascular and orthopedic surgeons should be aware of this problem as the number of knee arthroscopies continues to rise, especially in young athletes.
Figure 3. A, MRA of left knee demonstrating soleal artery pseudoaneurysm and AVF. B, Preembolization angiogram of left soleal artery pseudoaneurysm and AVF. C, Postembolization angiogram of soleal artery pseudoaneurysm and AVF, demonstrating no flow in pseudoaneurysm or AVF.

REFERENCES

Submitted Mar 11, 1999; accepted Jun 22, 2000.